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SEMILINEAR EQUATIONS 
WITH DISSIPATIVE TIME-DEPENDENT 

DOMAIN PERTURBATIONS 

BY 

NICOLAE H. PAVEL 

ABSTRACT 

Let X be a real Banach space and let A : D ( A ) C  X---~X be the (linear) 
infinitesimal generator of the semigroup S(t) of class C,, (of type ~o). Assume 
that the function (t, x ) ~  F(t, x) is continuous, the domain D(t)= D(F(t,. )) is 
such that t ~ D(t) is closed and for each t E (a, b), the operator x ~ F(t, x) is 
dissipative. One proves that the subtangential condition (A5) is necessary and 
sufficient for the existence of the mild solution to the equation u ' =  
Au + F(t, u). All previous results of this type are included here. An elementary 
method for proving the uniqueness is pointed out and applications to PDE are 
given. 

I. Introduction. Statement of the main results 

Let X be a real Banach space of norm I1" II. Recall that a family S = { S ( t ) ; t  >= 

0} of bounded linear operators S( t )  : X---~ X is said to be a semigroup of class Co 

if 

(1.1) S(0) = ! (the identity), S( t  + s) = S ( t ) S ( s ) ,  t, s >= O, 

(1.2) lim S (h)x = x, Vx ~ X. a,o 

S is said to be of type to E R if 

(1.3) IIS(t)llL(x)<=exp(tot), 0<= t <oo. 

A : D ( A ) C  X---* X is said to be the infinitesimal generator of S if 

A x  =l im (S(h)x -x)/h, Vx ED(A). 
h$O 

Received May 20, 1982 and in revised form March 20, 1983 

103 



104 N.H.  PAVEL Isr. J. Math. 

Let us consider the initial value problem 

(1.4) u'  = A u  + F(t, x), U(to) = x E D(to), t ~ [to, b), 

where toE (a,b ), - ~ <  a < b <=0% D ( t ) =  D ( F ( t , . ) ) C  X. 
If J, is a subinterval of [to, b) with to E Jr,, then u is said to be a mild solution to 

(1.4) on J, ,  if u ( t )C  D(t )  for all t E J . ,  u is continuous on J. and satisfies the 

integral equation 

f, (1.5) u(t)  = S(t  -to)X + S( t  - s ) F ( s ,  u(s))ds, t E J , .  
0 

If y ~ X and D C X then d(y  ; D )  stands for the distance from y to D. Recall 

that 

(1.6) [ d ( y ; D ) - d ( z ; O ) l < = l l y - z [ I ,  y, z E X .  

For the convenience of future reference we record the following conditions: 

(A1) A : D ( A ) C X - - - ~ X  is the infinitesimal generator of the linear semi- 

group S of class Co and of type to ~ R. 

(A2) For each to E (a, b) and x ~ D(to), there exist r > 0 and T E (to, b) such 

that D(t )  Cl B(x,  r) is nonempty for all t ~ [to, T] and t ~ D( t )  fq B(x,  r) is 

closed on [to, T]. (B (x, r) = {y E x ; l l  y - x II r}.) 

(A3) (t, x)---~ F(t, x)  is continuous at each (t, x) with t E (a, b), x ~ D(t) .  

(A4) For each t E (a, b) the operator x--~F(t ,  x)  is g(t)-dissipative, i.e. 

( 1  - A g ( t ) ) l l x ,  - x211 =< IIx, - x 2  - x ( f ( t ,  x,) - F(t, x2))ll 

for all x~, x2 E D( t )  and h > 0, with g: (a ,  b)---~ [0, + oo) a nondecreasing func- 

tion. 

(A5) l i m i n f h - l d ( S ( h ) x  + h F ( t , x ) ; D ( t + h ) ) = O ,  V t E ( a , b ) ,  x ~ D ( t ) .  

R~MARK 1.1. The mapping t---~D(t) is said to be closed on (a,b)  if the 

conditions: x, ~ D ( t, ), t, E ( a, b ), t. ---~ t ~ ( a, b ) and x, ---~ x, imply x E D ( t ). 

Actually we are using only t. 1' t. �9 

In view of (1.6) it is easy to check that (A5) is equivalent to 

( ) (A5)' lim ionfh-~d S ( h ) x +  S ( t + h - s ) F ( t , x ) d s ; D ( t + h )  = 0  

for all t E (a ,b )  and x ~ D ( T ) .  
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We shall prove that (A1)-(A5) guarantee the local existence (and uniqueness) of 

the solution to (1.5). For the global existence additional hypotheses are needed, 

namely: 

(B1) The mapping t --*D(t)  from (a ,b)  to 2 x is closed. 

(B2) For each s ~ (a, b) and for each connected component C(s) of D(s), 
there exists a continuous function w:[s,b]--*X, such that w(s )E  C(s) and 

w ( t ) E D ( t )  for all t E[s,/~] (for some /~ E(a ,b ] ) .  

REMARK 1.2. Obviously, (B1) implies the latter assertion in (A2). It is well 

known that (A4) is equivalent to 

(1.7) (F(t, x~) - F(t, x2), x~ - x2), <= g(t)llx~ - x2112 

for all x, E D (t), i = 1, 2, t E (a, b) where (y, x), = inf{x *(y); x * E J(x)} and J is 

the duality mapping of X (see e.g. [13], [15]). 

Clearly, in the case D( t )=  D, independent of t, (A5) becomes 

(A5)" l iminf h- ld(S(h)x  +hF( t , x ) ;D)=O,  Vt ~(a ,b ) ,  x ~ D .  

Moreover, if x ~ D O D (A), then (A5)" implies 

(A5)" l imjnf h-l d(x + h(Ax  + F(t, x)); D ) =  0. 

Note that if x is an interior point of D then (A5)" is satisfied. 

In the theory of mild solutions to (1.4) the following conditions were used ([8], 
pp. 350-353): 

(A6) S(t):D---~D, lira inf h-ld(x  +hF( t , x ) ;D)=O,  
h$O 

tG(a ,b ) ,  x E D .  

It is easy to see that (A5)" is strictly more general than (A6). To prove this fact 

we first note that (A6) is equivalent to: 

(A6)' For each t E (a, b) and x E D there exist h, ~ 0 and x. ~ D such that 

h211x + h . F ( t , x ) - x .  l l~O as n~o~,  S(t):D---~D. 

Set r. = (x, - x - h.F(t, x))/h.. Then r, ~ 0 as n ~ ~ and S(h,)x,  E D. We now 

have 
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h~ 'd (S (h , ) x  + h.F(t, x); D)<= h~' l lS(h,)x  + h,F(t, x)  - S (h , )x ,  II 

= l l F ( t , x ) - S ( h , ) f ( t , x ) - S ( h , ) r ,  ll---~O, as n ~  

and therefore (A6) implies (A5)". The following simple example shows that the 
converse implication is not true. 

Take X = R ,  D = [1,oo), y =>1 and S ( t ) = e - ' .  Then we have 

lim h- ld(e-hx  + h y ; D )  = 0 
h/,0 

for all x => 1. 

This since e -h+ hy => 1 for all sufticiently small h > 0. However (A6) is not 

verified, since e- '  does not map [1, + ~) into itself. 

We now are able to state our main results: 

THEOREM 1.1. Suppose that (A1)--(A4) are fulfilled. Then (A5) is a necessary 

and sufficient condition in order that for each to E (a, b) and x E D (to) there exists 

a local (unique) solution u to (1.5), on a subinterval [to, T]C[to, b), with 

T = T(to, x). �9 

In connection with the extendability of the local solution, the result is given by 

THEOREM 1.2. In addition to (A1)-(A5) suppose that (B1) and (B2) are also 

fulfilled (for a number b E (a, b]). Then (1.5) has a unique solution on the entire 

[to,/~), i.e. J, = [to,/~). �9 

An immediate consequence of Theorem 1.2 is given by 

COROLLARY 1.1. Suppose that (A1) holds. Let D be a closed subset of X and 

let F : (a, b) x D ~ X be a continuous function which satisfies (A4) with D (t ) = D 

for all t E (a, b ). Then for each to E (a, b) and x E D, there exists a unique solution 

u : [to, b)---~ D to (1.5) if and only if (A5)" holds. 

Note that the conclusions of the above results were known only under one of 
the additional conditions below: 

(1) F maps bounded subsets into bounded subsets and S( t )  : D ~ D (Martin 
[8], p. 353). 

(2) S( t ) :D- - -~D and F ( t , x ) = F ( x ) -  independent of t ([8], p. 355). 

(3) D = X and F ( t , x ) = F ( x )  (Webb [19], [11]). 

(4) A = 0, i.e. S ( t ) =  I (Kenmochi and Takahashi [4], [5], [17]). 
(5) A = 0 and D = X ([9], [10], [11]). 

We have to point out that Pazy [18] assumes the compactness of-S(t) for t > 0, 

instead of (A4). His result was extended in many directions (see e.g. [12], [15]). 
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2.  P r o o f  o f  t h e  m a i n  r e s u l t s  

For the proof of Theorems 1.1 and 1.2 we combine some techniques from [2], 

[4], [5], [8], [12], and [19]. For proving the uniqueness a new technique is given. 
The proof of these theorems is quite difficult, so we break it into several parts as 
follows: 

PROPOSITION 2.1. Suppose that (A1)-(A3) and (A5) are fulfilled. Let to E 

(a,b) ,  x ED(to) ,  T E ( t o ,  b), r > 0  and m > 0  be such that IIF(t,y)H<-_M, 

Vt E [to, T], y E B(x,  r) M D(t ) ,  

sup I1S(s)x - x II + Zo(M + 1)N ~ r, 
O~s<=To 

where To = T - to, N = exp(wT0). 

Then for each positive integer n there exist {t7}i%o in [to, T] and a n %approximate 

solution u, on [to, T] in the following sense: 

t~ = to, t~ < t,+t if tT < T and t,"+l=t~ ' if t~ = T, 

(2 .1 )  d~ " = t~+," - t? = < 1/n, l i m  t~ " -- T, 

(2.2) u . ( t~ )=x ,  x T = - - u , ( t T ) E D ( t ~ ) N B ( x , r ) ,  

n ~1 ~ r l  n ltF(t, y ) -  F(t , ,  x,)l t = 1/n, for all t E It,, t,+l], y E D ( t )  with 

(2.3) lit -x711~ sup IIs(s)xV-x711§ d:(M+ 1)N, 
O~_s<=d? 

f, u.(t)= S(t-t'~)xi + S(t-s)f(t';,xr)ds +(t-tl)p'; 

(2.4) 
/or t E [tT, tT+,], with IIpTII--< 1/n. 

PROOF. The construction of t7 and u. is by induction on i. Since in this proof 

there is no danger of confusion we omit n as a superscript for ti, x, and d ,  Set 

t; = to and x;  = x. Assume that u, is defined on [to, t~], t~ < T and (2.2)-(2.4) are 

fulfilled on [to, t,]. Let us show the construction of ti+l and u, on [t~, t~+t]. To this 

aim define 8(x,) as the supremum of all h with the properties: 

(2.5) 0 < h <-_ l/n, t, + h <= T, 

(2 .6 )  

(2.7) 

sup IIs(s)z -zll-<-l/n, Vz E{xj ,F(t j ,  x ,) ,]  = 0 , 1 , . . . , i } ,  
O~:s~h 

UF(t,y)-F(t,,x,)ll<-_l/n, Vt~[t, , t ,+h],  y ~ D ( t )  

with II r - x, II --< sup II S(s )x ,  - x, ti + h ( M  + 1)N, 
O..% .< h 
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f t~ +h ) 
(2.8) d S(h)x, + S(t~ +h  -s)F(t~,x,);D(t~ + h )  <=h/2n. 

.I tj 

Then there exists h = d~' E (2-t6(x,), 6(x,)) satisfying (2.5)-(2.8). Set t~+~ = t~ + d,. 

For h = d,, (2.8) yields 

(2.9) d(S(d,)x ,  + f"*' S(t ,+~-s)F(t, ,x,)ds;D(t,+,)) <-d,/2n 

which shows that there is x~+~ E D(t~+~) of the form 

(2.10) x,+, = S( / ,+ , -  t,)x, + S(t ,+,-s)F(t , ,x , )ds  +(t~+,-t,)p, 
J ti 

with lip, I I -  -< 1/n, Define u. on [t~, t,+~] as indicated by (2.4). Introducing the 

functions a. (s) --- tj on [tj, tj+~), / = 0, 1 , . . . ,  i, a, (T) = T, one easily checks that u, 
can be written in the form 

f, (2.11) u . ( t ) = S ( t - t o ) X  + S ( t - s ) F ( a . ( s ) , u . ( a . ( s ) ) ) d s + g . ( t )  
o 

where 

i-1 
(2.11)' g . ( t )=  ~ (t j+,-t j)S(t-t j+,)pj  +(t- t~)p, ,  tE[t~,t~+l) 

i=0 

hence Ilg. (t)ll ~ N(t  - to)/n for all t E [to, t~+,]. 

In view of the induction hypothesis and of the choice of T, for t E Its, t~+l] we 
have 

II u, (t) - x II <= II S(t  - to)x - x II + (t - to)MN + N( t  - to)/n <- r. 

Set i =  lim,~= t~. Clearly t-_-< T. By standard arguments (see [12]) [15], [19] one 

shows that lim,~= x~ = 2  exists, so 2 E D ( i ) n  B(x, r) (on the basis of (A2)). We 

have toprove  that i = T. The proof is by contradiction. Hence let 7 < T. Choose 

c E ((3, 1/n) such that i + c < T and 

IIF([, . f ) -  F(t, Y)II--< 1~an, 
(2.12) 

y E O ( t ) ,  I l y - X l l < = 2 c + Z c ( M + l ) N ,  I t -} - ] -<3c .  

Let us consider the compact K given by 

K = {x,, F(t,, x,), ~, F( i ,  2), i = 1 , . . .  }. 

There exists /~ ~ (0, c) with the properties 
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( 2 . 1 3 )  sup_llS(s)z-zll~c, Vz K, 
O ~ s ~ 2 h  

( ) (2.14) d $(h),~ + S(t +h - s )F( ' t , s  +h)  = h/4n. 

Set hi = t + h - t~. Hence hi > h and hi 1,/Y as i ~ ~. Let  io be a positive integer 

with the property that 

h , < 2 h ,  t - t ~ < h ,  Vi>-_io. 

Note that  ~(x,)<2d, = 2(ti+t-  t~)---) 0 as i ---) oo. In view of (2.12) and (2.13) it is 

easy to verify that  (2.6) and (2.7) hold with hi in place of h. Since hi > ~(x,) for 

i => io, it follows that  for h = hi, (2.8) is not true, i.e. 

Jr ft~ f+h' d(S(h,)x,  ' 'S(t, +h, -s )F( t , , x , )ds;D( t ,  +h , ) )>h, /2n  

(2.15) for all i => io. 

Lett ing i---)oo in (2.15) one obtains an inequality which contradicts (2.14) (one 

observes also that  t~ + h~ = t + h). On the basis of (2.4), lim, t r u, (t) = lim,~= x, = 

~, so defining u. ( T ) =  ~, completes the proof. 

REMARK 2.1. For  y = x~+~, (2.3) yields 

(2.16) tlF(tT§ i = 0 , 1 , . . .  

PROPOSITION 2.2. In addition to the hypotheses of Proposition 2.1 suppose that 
lim,_~ u,( t )= u(t) exists uniformly on [to, T]. Then u is a solution to (1.5) on 
[to, T]. 

PROOF. Let  t ~ [to, T). Then  for each n there exists i = i, (t) = i, such that  

t E [t~, t~§ hence t a ,  (t) - t l --<It - t, I --< 1/n. It follows that  u. (a.  (t))----> u (t) as 

n ----> oo uniformly on [to, T]. On the other  hand,  u, (a.  (t)) = x ,~ E D (tT,) n B (x, r) 

and tT.---)t, xT--->u(t) as n ~ .  On the basis of (A2) we have u ( t ) E D ( t ) n  
B(x, r). Finally, letting n ~ oo in (2.11), the result follows. �9 

For the proof of Theorem 2.1 some other  results are needed.  Let  m and n be 

positive integers and let U = {iT, tT'; i , j  = 0, 1 , . . .  }. Denote  by {r,}7~o the mini- 

mal ref inement of the partitions {tT} and {t~'} of [to, T], i.e. 

ro = to, r,+~ = min{t E U;  t > r,}, e = O, 1," �9 �9 

PROPOSITION 2.3. Assume that the hypotheses of Proposition 2.1 hold. Then 

there exist the functions v, and vm from [to, T] into X with the following properties : 
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e ~  0 For each positive integer e, there exists a partition {s k}k =o '/ [re, r,+,] such that 

so=r,, sk+~ = & i f& = re+t, O<sk+~--Sk=--h~ <= r,+~-re <min{1/n, 1/m}, 

(2.17) 
lim sk = re+, 

where e as a superscript [or s~ is omitted. Furthermore 

(2.18) 
lira 

s T re+l 

vp(to)= X, v~ = v pk,,= v .(s~)E D(sk )N B(x,r) ,  

v ~ ( s ) = v . ( r e + , - ) ~ D ( r . + O N B ( x , r  ), p = m , n ;  e = O ,  1 , . . . .  

I f  for the integers i and j we have the situation 

i n  . m  < n m 
i , t j  = re ( r e + ,  ~ t i+l ,  t/+l, 

then : 

(1) v , ( r , )=u . ( r , )  i[r, =tT, and v . ( r , ) = v , ( r , - )  if r, =tT', 

(2.19) (2) v , , ( r , )  = u , , ( r , )  i[r, =t? ,  and v, , ( r , )  = v,.(r ,  - )  i[r, =tT. 

Moreover, [or all t ~ [r,, r,+~] we have 

(2.20) II v= ( t ) -  u. (t)ll--< 3(t - tT)N/n, 

Furthermore 

II v ,  ( t)  - u,, (t)ll ~ 3(t - tT')N/m. 

(2.21) 

(2.22) 

I1 vp (t~+l) - vp (t~+x - )11 = 3(t~+, - t[)N/p, p = n, m ; i = O, 1 , . . . ,  

I lF ( t , y ) -F(sk ,  v~)ll<=l/p, tE[&,sk+,], Vy ~ D ( t )  

with I ly-v~l[= sup IIS(s)v~-v~ll+h~(M+l)N, p = m , n ,  
O<--s~hk 

sup II S(s)z - z l l  ~ min{1/n, 1/m}, 
O~s"~h~ 

(2.23) 
Vz G{vg,F(sq, V~), q = 0 , 1 , . . .  ; p = re, n}, 

s 
or(t) = S(t  - s~)v[ + S(t  - s)F(SE, odds + (t - sk)q['" 

k 

(2.24) with Ilqt'll--< 1/p, r, <-_ s~ <= t < sk+, <-_ r,+,, p = m, n 

(so vp is continuous on [r,, r,+.)). I1' in addition to the above hypotheses we suppose 

that (A4) is also [ulfilled, then the [oUowing estimate holds: 
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(2.25) 
II - ) -  (r, -)11 

<= 6NTo(m -~ + n-~)exp(2g(T)To+ toTo), e = O, 1 , . . . .  

PROOF. Let  e be a positive integer. Assume that v~ and v, are constructed 

on [to, r,] with the above properties on [to, r,]. We now show the construction of 

vm and v, on [r,, re+l]. 
Set So = re and define Vo"-- v,(So) and Vo~-- vm(so) as indicated by (2.19). 

Suppose that v, and vm are defined on [So, sk] by (2.24) with k - 1 in place of k. 

Define v~ and Vm on [sk, sk+~] as follows: if sk = r,§ set Sk+l = r,+l and if sk < r,+l 

set S~+l = sk + hk, where hk is defined below: 

Let 8k be the supremum of all h with the properties 

0 < h _--- min{m-l, n - l } ,  

(2.26) 

s, + h  <=r,§ sup I IS ( s ) z - z l l<=min{m- l , n  -'} 
O~s~_h 

Vz E{vP,F(si, o~), j = 0, 1 , . .  ",k; p = re, n}, 

(2.27) iiF(t,y)-F(s~,v~)ll<=l/p, VtE[Sk,Sk+h],  V y ~ D ( t )  

with 

Ily-v ll  sup IlS(s)v -v ll+h(M+l)N, p =m,n  
O~--s~h 

(2.28) d S(h)v~ S ( s k + h - s ) F ( s k ,  v~)ds;D(sk+h) <=h/2p, p = m , n .  

We now choose hk ~ (2-1~k, Ski satisfying (2.26)-(2.28) with hk in place of h. 

Substituting h = hk into (2.28) we conclude that there exists v[§ ~ D(sk + hk)-- 
D(sk§ such that 

~ Sk+ 1 

(2.29) v[+l = S(Sk§ + S(sk+l-s)F(sk, v~ds +(Sk+l--sk)q[ 'e 
k 

with Ilqt'll--< 1/p. For simplicity set q~'" = q[ ,  p = m, n. 

We now define vp on [sk, sk+l) as indicated by (2.24). Similarly to un given by 

(2.11), one checks that vp can be written under the form 

[, 
(2.30) vp( t )=S( t - so)vg+ S( t -s)F(b(s) ,vp(b(s)) )ds+q~(t )  

o 

for so-__N t < sk.1, where b(s)=ss on [sj, sj§ j = 0 , 1 , . . . , k  and 

k - 1  

(2.31) q~(t)-- ~ ( s j§247  t e[sk,s~§ 
j = l  
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hence Ilq~(t)H =< N ( t  - So)/p, p = m, n. 

Suppose that the situation in (2.19) is the following one: 

(2.32) t~" < tim = re < r,+l = t/+a" < tj+l." 

Then by the convention (2.19) 

(2.33) s~, - So = re = t?, v~ -- v, (t?) = v. ( t? - ), v g ' -  v,. (t?) --- x?.  

Accordingly, for p = m, n, (2.30) becomes respectively 

f, - " '~ S ( t  - s )F (b ( s ) ,  v,~ (b(s)))ds  + q2( t )  v , . ( t ) =  S ( t  tj )xj  + 7 (2.34) 

with 

(2.35) 

with 

IlqT(t)l[--< N ( t  - t?) /m,  t E [t?, sk+,), 

+I,' = - " S ( t  - s )F (b ( s ) ,  v, (b(s)))ds  + q: ( t )  v . ( t )  S ( t  t j ) v . ( t ? - )  ' 

(2.36) 

with 

(2.37) 

[[ q,"(t)[I ~ N ( t  - t?) /n,  t ~ I t? ,  sk+,). 

On the other hand, by (2.11) (with m in place of n)  we have 

u . ( t ? )  = x ? =  s (c - to )x  + S(t?-s)F(a.(s),  u.,(a,~(s)))ds +g,~(t?) 
J t o  

Ilgm (t?)ll =< N(tT'- to)tin. 

Substituting x?  into (2.34) one obtains 

v.  (t) = S ( t - t o ) x  + S ( t - s ) F ( a , ~ ( s ) , u . ( a m ( s ) ) ) d s  
J t o 

f + S ( t - s ) F ( b ( s ) , v m ( b ( s ) ) ) d s + S ( t - t ? ) g , . ( t ? ) + q ' 2 ( t )  
? 

with 

II S (t - tT')g,, (tT')+ q'~(t)ll <= N ( t  - to)/m, t ~ [t?, s~+1) (see (2.11)'). 

By the induction hypothesis, v,, (b(s))  ~ D ( b ( s ) )  A B(x ,  r) for s E [So, sk+l), 

hence IIF(b(s), v .  (b (s ))) ll --< M on [So, sk+0. Thus (2.37) yields 

U v , , ( t ) - x l l < = U S ( t - t o ) X - X l l + ( t - t o ) ( M + l ) N = r ,  t C [to, Sk+l). 
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Similarly one shows that II v, (t) - x II ~ r  o n  [t,,, sk+~). Arguing as for the proof of: 

lim,__,~ t7 = T (see (2.12)-(2.15)) one proves that sk '~ re§ as k ~ ~. The details 

are left to the reader (it can be found in the book [15], ch. 5). Moreover one 

shows that limk--~ Vp (Sk) ~- Xp exists, and in view of vp (SE) E D (SE) A B (X, r) it 

follows that xp E D(r,§ fq B(x ,  r), p = m, n. 

Finally, on the basis of (2.24) (where v~= Vp(Sk)) we have 

I l v ~ ( t ) - v ~ l l < = l l ( S ( t - s ~ ) - l ) v ~ l l + ( t - s ~ ) ( M  + l)N,  tE[sk,sk+,) ,  

which implies 

vp(r ,+~-)=  lim vp( t )= l im v~==-xp E D ( r , + I ) A B ( x , r ) .  
t I' re+l k - -~  

Consequently, it remains to prove (2.20), (2.21) and (2.25). 

In the situation (2.32), v,, is given by (2.34) on [r,, r,§ while u,, has the form 

(2.24) with m in place of n, i.e. 

(2.38) 

Therefore we have 

II vm ( t ) -  um (t)ll--< ~'  
./t ? 

(2.39) 

In view of (2.34), 

-~ - / "  t trl m tn 
= " " S( t  - s )F ( t s ,  x~')ds + (t - tj )Ps, urn(t) S ( t - t j ) x j  7' 

t ~ [t?, t,Z,], IIPTII--< 1/m. 

NIIF(b(s  ), vm (b(s)))  - F(tT', xT')[I ds + 2(t - t•)N/n, 

t ~E [tT', t ,\ ,) (see (2.32)). 

IIv.(b(s))-xT'll<= sup I IS(s )x?-x? l l+d?(M + l)N, s E[t'~,tT+,), 
O~s'C:d i 

where dT' = ts~+i- tT'. By the definition of dj = dT', (2.7) yields 

(2.40) I lF(b(s) ,vm(b(s) ) ) -F( tT ' ,xT ' ) l l<=l /m,  sE[tT',tT+l) 

and thus Ilom(t)- um (t)ll--< 3(t - tT')N/n, on [tT', t:'+l]. 

In the situation (2.32) the following two possibilities may occur: 

(1 ~ either t~'< tsZ~ (so r,_, = tjZ1), or 
m n (2 ~ tj-1 < t , .  

In the case (1~ (2.30) gives 

- ~ '~ S( t  - s )F(b ( s ) ,  v,~(b(s)))ds + q L l ( t )  (2.41) v,~(t)= S(t ts_~)xj_l+ ~_ 
t I 1 
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for  t ~ [ t ~ ,  t;"), where  ]]qT-,(t)]] <- (t - t~" , )N/m,  hence 

(2.42) v m ( t ~ " - ) = S ( F / ' - t ~ ' , ) x ; ' ~ +  S ( t ' / ' - s )F(b ( s ) , vm(b( s ) ) )ds+qj '~ ( t ' / ' )  

with IIq;,(t?)ll--< ( t ? -  t ; , )N/m.  Inasmuch  as 

v,. (C)  = (t?) 
(2.43) ~ t m  

m m 

=S(t '~- t j"_ , )x j~ ,+ S( t '~-s)F(t '~ , ,x '~- l )dS +(t~"- t j .L)pj  ,, 

lip;, II <= 1/m 

and arguing as for  (2.40) (with j - 1 and e in place of j and e + 1, respectively),  

(2.42) and (2.43) yield 

(2.44) 1] Vm (t'/'-- ) -- V,, (t;")]] =< 3(t;" -- t~'! , )N/m.  

We now prove  that  (2.44) holds in the case (2 ~ ) too. Let  us observe  that  in this 

case (i.e. t~'_, < t~' and (2.32)), r,_~ = tT. Howeve r ,  we do not necessari ly have 

re-2 = tT',, since the following si tuat ion may  occur: 

" " < t "  k = 0 , 1 , ' "  q. (3 ~ ) tj_, < t,-k . . . .  

The  calculus be low allows us to see that  we may  consider  only q = 0, i.e. 

(2.45) " < m , = . . . . . . . .  t, l = t i  I < t ~  (SOre-2 tj ~,re t=t~,re =tj,re+~=t~+~<tj+~). 

Clearly,  (2.30) holds for  all t E [re, re+,). In the case of the intervals [r, ,, re) and 

[re 2, re-O, (2.30) yields respect ively  

(2.46) vm (t;" - ) = S(t~" - t:')v,. (t:') + S ( t ; " -  s ) f ( b ( s ) ,  v,. (b(s)))ds + q2 ,(t~") 

with ]]q"! ,(t;")H <= (t~"- t',')/m, 

v , , , ( t ; ' - )=S(t: ' - t~" , )vm(t~ '~, )+ S ( C - s ) f ( b ( s ) , v , , , ( b ( s ) ) ) d s + q 2 2 ( t : ) .  
,! 

(2.47) II q % 2(I r)II <= (t :' - t~"_,)g /m. 

On the o ther  hand,  vm(tT)=vm(t7 - )  and vm(tj~-,)=xj~-,, so substi tut ing 

Vm (tT--)  into (2.46) one obtains  
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vm (tT' - ) = S(tT'  - tjZ,)xsZ, + S(tT'  - s ) F ( b ( s ) ,  v., ( b ( s ) ) )d s  
7"-, 

(2.48) + S (tT' - t 7)q 7-2(t 7) 

l',r 
+ a , ;_S( t '7  - s ) F ( b ( s ) ,  v,, ( b ( s ) ) )d s  + q~%l(t'/'). 

Let us write the formula (2.43) under the form 

f ' r  S(t 'F - s)F(tj~-l,  xj~-l)ds t)m(t~') = S ( t ' ~ -  tj'n-,)xjm-1 + ?-~ 

(2.49) r 
+ j,. s(t?-s)F(t?_l,x?_3ds +( t ' r - t , " - l ) p , ' - l .  

Finally, (2.40), (2.48) and (2.49) show that (2.44) holds and in the 'case (2 ~ 
above a quick check of the proof shows that the general case (3 ~ can be treated 
in the same manner.  We now suppose that (A4) holds and prove the crucial 
estimate (2.55). Since v[+l = vp (Sk+l) ~ D(sk+l),  p = m,  n (by (2.18)), then (A4) 
implies (for A = hE = Sk+l -- Sk and t = sk+l) 

(1 - g(s,+,)hk )]] v,. (sk+,)- v. ( s ~ . ) l l  

(2.50) =< II v.  (s,+,) - o. (Sk+l) - -  hE (F(Sk+l, l)rn (Sk +1)) -- F(sk+l, v. (sk +1)))II" 

Combining (1.3), (2.29), (2.50) and the elementary inequality 

(2.50)' (1 - -  t) -1 ~ exp 2t, t ~ [0, �89 

we get 

IIv~'+,-o~+,ll= < o r - v i i i +  IIs(sk+,-s)Fr-f '~+ll lds+---  
ask n m 

(2.51) 

I? ] § II S(sk+1 - s)FT`- FT`+ll[ ds exp(2g(r.) + o~)h~ 
k 

where F [ =  F(SE, Vg), p = re, n, and g ( T ) h k  ~�89 

On the basis of (2.23), (2.26), (2.27) and (2.29) it follows that 

(2.52) IIF[+,-F[II<=I/p, IIS(sk+,--s)F~--F[II<=I/p, S~[S,,S,+,] 

and therefore (2.51) implies 

(2.53) ~ ~ ) r + l -  o7,+111--- [11 o r -  o7`11+ 3(m -1+ n - 1 ) h ~ ] e x p ( 2 g ( T )  + w)hk .  

Substituting hk = sk+~- SE into (2.53) and iterating, we get 
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II v .  (s~+,)-  v. (s~+,)ll---- Ill Dm (SO) - -  On (so)ll + 3(m -1 -4- n - ' )  ( sk  +, - So)] 
(2.54) 

x exp(2g(T)+ o~)(sk+,- so). 

Letting k ---> oo (i.e. s~+l 1' r,+,), (2.54) yields (e = 0, 1 , . . .  ) 

IIv.(r.+,- ) -v . ( r ,§  )ll<=[llvm(r,)-v.(r,)ll+ 3(m-' + n-')(r.+,- re)] 

(2.55) x exp(2g(T)+ o~)(r~+,- r,). 

Let us observe that 

IIo.(r.)-o.tr,)ll<llo.(r, - ) - o . ( r ,  -)11 + II o- (r, - ) -  v~. (r,)ll 

(2.56) + II v, (r, - ) -  vm (r.)U. 

Taking into account (2.21) 

(2.57) ~.ollvp(r~)-vp(r~-)ll<=3NTo/p, p = m,n. 

Substituting (2.56) and (2.57) into (2.55) and then iterating (2.55) for e = 

0, 1, . .  ", e - 1, with v,, (to - ) = v. ( t o - )  = x (since to = ro) one obtains (2.25). 

PROOf OF Trmom~M 1.1. Necessity. Let  to E (a, b) and x E D(to). If (1.5) has a 

solution u = u (t; to, x), then 

U(to + h )  S (h )x  + [.,~ ~247 = S(to + h - s)F(s, u (s))ds E D (to + h) 

for all sufficiently small h > 0. Consequently, 

l i~  h - l d ( S ( h ) x  + hF(to, x); D(to + h)) 

_-__ lim h- ' l lS (h)x  + hF(to, x ) -  U(to+ h)ll 
h ~ o  

(2.58) 
,im Ll  ,o x, r kt = S(to+ h - s)F(s, u(s))ds 
h J, O - h  .it ~ 

=0 

so (A5) follows even with "lim" in place of "lim inf" 

Sufficiency. The conditions (A1)-(A3) and (A5) imply the existence of u,, v, 

satisfying (2.1)-(2.4), (2.17)-(2.24). We now prove that the dissipativity condition 
(A4) (which yields (2.25)) ensures both the existence (i.e. the convergence of u,)  
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and the uniqueness of the solution to (1.5). For proving the convergence of u, let 

t be arbitrarily chosen in [to, T]. Then for each pair (m, n) of positive integers, 

there are i = i(t, n) and j = j(t, m)  such that 

. . . . .  = e ( t , m , n ) .  t ~ [t~, t~§ N [tj , tj§ = [re, re+l], with e 

Let k = k(t, m, n) be such that sk < t < sk§ Then by (2.20), 

(2.59) II u .  ( t )  - v .  (t)ll = 3 ( t  - tT)N/n <= 3 N / n  2, 

On the other hand (2.24) gives 

11 vp ( t ) -  op (s~§ NIl S(s~§ - t )v~-  v~ll 

II Um (t)  -- 0,1 (t)l I ~ 3 N / m  2. 

N t f + L, IlS(s~+,+ t )F(sk, v~ ) -  F(sk, v~)[[ ds 

<= N / p  + N( t  - SE )/p + N(S ,+ , -  t)/p + NM(sk+~ - t) 

< 2MN(1/p  + 1/p2), p = m, n 

where (2.52) was also used. Substituting (2.25) and (2.57) into (2.56) we get 

(2,61) II v.  (re)-  v. (re)ll =< 9CTo( m-I + n-1)exp(2g(T) + to)To with C = 2MN. 

Going back to (2.54) (in which So = re) we conclude that 

(2.62) II Vr, (S~+1) -- V. (Sk+l)ll <--<- 12CTo(m-1 + n-1)exp(4g(T) + 2to)To. 

Finally, a simple combination of (2.60) and (2.62) yields 

II vm (t ) - v, (t )ll <= C(m -~ + n-1)(2 + 12 To)exp(4g( T) + 2to)To 

which shows that v, (t) is uniformly Cauchy on [to, T]. By (2.59) it follows that 

u, (t) is also uniformly Cauchy on [to, T]. Set u(t)  = lim,_~ u, (t). According to 

Proposition 2.2 u is a solution to (1.5). 

The uniqueness. In general a mild solution may not be ditterentiable (see e.g. 

[8], p. 345). Consequently, for the proof of the uniqueness we cannot use the 

standard method involving a lemma of Kato ([4], [5], [8, p. 232], [13, pp. 148, 

150]). In what follows we give a simple technique, which is independent of both 

differential inequalities and of integral solutions. 

Let ul and u2 be solutions to (1.5) on [to, T], with ul(to)= x, and u2(to)= y. 

Then by (A4) 
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(1 - g(t + h ) h ) l l  u,(t + h ) -  u~(t + h)l]  

(2.63) < - I l u , ( t + h ) - u 2 ( t + h ) - h F ( t + h ,  u l ( t + h ) ) + h F ( t + h ,  u2(t+h))ll 

for all t E [to, T) with T = min{Tl(to, x), T2(to, y)} and for all h > 0 with t + h < 

T. Clearly, u, can be written under the form 

~ t + h  

(2.64) u , ( t + h ) = S ( h ) u , ( t ) +  S ( t + h - s ) F ( s , u , ( s ) ) d s ,  i =1 ,2 .  

Combining (1.3), (2.63), (2.64) and the inequality 

(2.64)' 

we get 

(2.65) 

(1- t ) -~<--exp( l+e) t ,  t ~ [ O , l - ~ e  ] ,  e > O  

II u,(t + h ) -  u2(t + h)ll ~ (11Ul(t) - -  u2(t)ll + II I011)exp[(1 + e)g (t + h) + w l h 

where hg(T)(1 + e ) <= e, and 

['t+h 
Io = J, S( t  + h - s)(F(s, ul(s)) - F(s, u2(s))) 

(2.66) - (F(t + h, u~(t + h )) - F( t  + h, u2(t + h )))ds. 

Set f ( t )  = F(t, u,(t)) - F(t, uz(t)). Let K be a compact of X such that f ( t )  ~ K for 

all t E [to, T]. There is d = d ( e ) > 0  such that 

(2.67) IIs(s)z-wll<=~, Vs~(0,~) ,  IIz-wll<_a, z , w ~ K .  

Choose r = r (e)  with the property 

Ilf(t)-f(s)ll<-_d, Vt, s~[ to ,  T], [ t -s]<=r.  

Note that s E [t, t + h] implies 0 - t + h - s =< h, hence 

(2.68) IIf(s)-f(t+h)ll<-_d, V s E [ t , t + h ] ,  0 < h < r  

and therefore by (2.66) and (2.67) we have 

II/oll_-<he, V h < d o ( e ) = m i n { d , r } ,  V tE[ to ,  T), t + h < T .  

Accordingly, (2.65) yields 

(2.69) II u,( t + h ) -  u~( t + h)ll--< ill u, ( t ) -  u~(t)ll + he)exp[(1 + e )g(t + h) + w]h 

for all t E [to, T) and h <= ho = min{do(e), e/(1 + e)g(T)}. 
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Fix t E [ t o ,  T] and choose a partition t o < t l < . . . < t , = t  of [to, t] with 

tk - tk-i = hk =< ho. Then (2.69) gives 

(2.70) II u~(t~ ) -  u2(tk )ll <= (11 u,(t~_~)- u=(t~-l)ll + ehk )exp[(1 + e)g(tk) + co ]hk. 

Iterating (2.70) for k = 1 ,2 , . . . ,  n, one obtains 

(2.70)' II u,(t)- u2(t)ll--- (llx - y II + (t - to)e)exp[(1 + e ) g ( t )  + co] (t - to). 

Since e > 0 was arbitrarily fixed we conclude that 

(2.71) II u~(t)- u2(t)ll----II x - y I[exp(g(t)+ co)(t - to), t E [to, T] 

with u~(to) = x, u2(to) = y, x, y ~ D(to).  In particular (2.71) implies the uniqueness 

of the solution to (1.5), which completes the proof. 

REMARK 2.2. We now sketch another method (indicated by the referee) for 

proving the inequality (2.71). 

With t in place of t + h, (2.64) becomes 

+ ( '  
u, ( t )  = S ( h ) u ,  (t - h )  J,-h S ( t  - s )F ( s ,  u, ( s ) )as  

(2.72) 
- - S ( h ) u , ( t - h ) + h F ( t , u ~ ( t ) ) + h r i ( h ) ,  i =1 ,2 ,  

where ri (h)---~ 0 as h ~, 0 (by the Lebesgue theorem) and t E (to, T]. Combining 

(A4) (with ~ -- h)  and (2.72) we get 

(1 - hg(t))ll ul(t)- u~(t)ll- II u~(t)-  u2(t) - h(F( t ,  u~(t)) - F( t ,  u~(t)))ll 
(2.73) 

<--II u~(t - h ) -  u2(t - h)llexp(coh ) + h (llr,(h )tl + IIr=(h)ll) 

Obviously, (2.73) can be written in the form 

- h-l(U u,(t - h ) -  Uz(t - h ) l l -  II u,(t)-  u2(t)ll) 

<= ( g ( t )  + (exp(toh) - 1)/h)ll u,(t)- u~(t)ll. 

Letting h ~ 0 one obtains 

D-II u,(t)-  u2(t)ll <- (g(t) + ~o)11 u , ( t ) -  u2(t)l I (2.74) 

where 

D _ f ( t )  = lim sup ( ( f ( t  - h )  - f ( t ) ) / ( -  h )). 
h~,o 

Solving the differential inequality (2.74) we get (2.71). 
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Note that the usage of (2.64)' with 0 <  e < 1 instead of e = 1, may improve 

some estimates in several papers on difference approximation of Cauchy 

problems (see e.g. [6], [7], [16]). 

REMARK 2.3. The proof of Theorem 1.2 follows a technique of Kenmochi 

and Takahashi [5], and it is given in [15]. 

It is well known that for an arbitrary semigroup S of class Co we have 

II S(t)llL~x~ <= M exp(wt), t => 0. A simple check of the proof shows that for M > 1 

our estimates will not be useful, since the powers of M will appear in the right 

hand side (referee's remark). However,  the conclusion of Theorems 1.1 and 1.2 

remains valid for S, too. In this case the proof is more complicated and follows 

some techniques from [17]. Actually, for most applications to PDE, it suffices to 

restrict ourselves to semigroups of type to (see (1.3)). Recall that the semigroups 

of type 0 are called the contraction semigroups. 

COROLLARY 2.1. Let D be a closed subset of X and let S be a semigroup of type 
to. Suppose that F : (a, b) x D --> X is a continuous function and for each 
tE (a ,b ) ,  the operator x-->F(t,x) is g(t) dissipative (i.e. (A4) holds with 
D ( t ) = D ) .  Then for every toE(a,b) and x ED,  there is a unique solution 
u : [t~, b)--> D if and only if (A5)" holds. 

PROOF. We observe that for x E D, (B2) holds with w(t) = x, Vt ~ (to, b) and 

/~ = b. Accordingly, on the basis of Theorem 1.2 the result follows. 

3. Applications to some partial differential equations 

Let f~ be a bounded domain in R"I with smooth boundary F. Set 

(3.1) B(r)={uEL2(f~);llull2<=r}, fL(r)={u~L2(f~);l lul l~<r} 

where II u 112, II. I1~ denote the norm in L 2(f/), L~(fI), respectively. Let us consider 
the problem 

(3.2) u,(t ,x)= Axu(t,x)+f(t ,u(t ,x)),  a.e. on (0, T) • I~, 

(3.3) U(to, X)= Uo(X), a.e. on f~, 

(3.4) u(t,x)=O, a.e. on (0, T ) •  tl/2u, EL2(O, T;L2(I~)), 

where to E [0, 1), T E (0, 1] and u0 E L~(O). The function f : [0, 1] • R ~ R is 

continuous and A is the Laplace operator in R ' .  We shall reduce the above 

problem to the abstract Cauchy problem 

(3.5) u ' = A u + F ( t , u ) ,  u(O)=uo~B=(1), t E l0 ,1 ]  
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with A = 3, and D(A)= Hi(O)fq HZ(~) and F - -  the Nemytski operator 

(3.6) (F(t,u))(x)=f(t,u(x)), a.e. o n ~ ,  t ~ [ 0 , 1 ] ,  uEL2(f~). 

In [1] and [12] one assumes that for each t > 0, the operator u--~F(t, u) is 

defined on open subsets of L2(f~) (this fact holds if f satisfies a growth condition 

with respect to x). In this paper we do not assume a growth condition of f in x, 

and therefore F(t,. ) may fail to be defined on open subsets of L2(f~). Clearly, 

F(t,. ) is defined o n / ~ ( r ) ,  which is not open in L2(f~). Even more,/3~(r) in not 

locally closed in L2(I~). Of course F(t,. ) is defined on B=(r), which is closed in 

L2(f~), but for D = B~(r) the subtangential condition (A5)" in Corollary 2.1 is 

not verified in general. It is interesting that we are not obliged to work in 

X = L~(I)). By applying Theorem 1.1 we can solve (3.5) directly in X = L2(12). 

Indeed, if we take D(t) = B~(t) then (A2) holds and F(t,. ) is defined on D(t). 
Suppose for simplicity that 

(3.7) If(t,s)l<=l, t E [0, 1], s ~ [ - 1 , 1 ] .  

This implies liE(l, u)ll~--< 1, Vt E [0, 1], u E B~(1). Consequently 

[IS(h)u +hF(t,u)ll~<=llull~+h <=t+h, Vu ~D(t) ,  
i.e. 

S(h )u+hF( t ,u )ED( t+h) ,  VuED( t ) ,  h > 0 ,  t E h < l ,  t ~ [ 0 , 1 ) .  

Thus we have d(S(h)u + hF(t, u); D(t + h ) ) =  0 in L~(f~) (hence in L2(~) too) 

so (A5) holds in X = Lz(~). Finally, suppose also that for each fixed t E [0, 1], 

the function s ---~f(t, s) is decreasing on [0, 1]. This implies that F satisfies (A4) in 
L2(f/) with g = 0. Therefore all the hypotheses of Theorem 1.1 are fulfilled, so 

(3.5) has a unique mild solution u defined on [0, T] for some T E (0, 1], with 

u(t) E D(t) on [0, T]. Since in this case A = A is the subdifferential of a lower 

semicontinuous convex function, the mild solution u is even a strong solution in 

LZ(f/) (see e.g. [15], ch. 3) and in addition: 

u ( t ) E D ( A )  a.e. on [0, T], and t~/2u, ~L2(O, T;L2(~)) .  

In other words we have proved the following result: 

THEORE~I 3.1. Let f : [0, 1] x [ - 1, 1]---~ R be a continuous function, which 
satisfies (3.7) and is decreasing with respect to the second variable. Then for each 
Uo E B| the problem (3.2)--(3.4) has a unique solution. 

REMARK 3.1. The new fact here is that f(t,x) does not satisfy a growth 

condition with respect to the second variable x, and therefore the Nemytski 
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o p e r a t o r  (3.6) is n o t  d e f i n ed  o n  o p e n  sets  of L2(I~). I t  is de f i ned  o n  c losed  sets  of 

L2(f~) a n d  (3.5) is r e g a r d e d  as a p r o b l e m  wi th  t - d e p e n d e n t  d o m a i n .  
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